Evaluation of Small Mass Spectrometer Systems

C Richard Arkin¹, Timothy P. Griffin¹, Andrew K. Ottens², Jorge A. Diaz³, Duke W. Follistein⁴, Frederick W. Adams⁴, and William R. Helms⁴

¹ Dynacs Inc.
² University of Florida
³ Universidad de Costa Rica
⁴ NASA, Kennedy Space Center
Introduction

Understand Aspects of Designing a Miniature Mass Spectrometer (MS) System

Systems Evaluated
- Linear Quadrupole
- Quadrupole Ion Trap
- Sector
- Quadrupole Array
- Time of Flight

Figures of Merit
- Accuracy
- Limits of Detection
- Response Time
- Volume
- Precision
- Scan Rate
- Recovery Time
- Weight

Set Up Scale to Rank Systems
Why Miniaturize?

• **Improve Portability**
 - Field Applications
 - Real-Time Analysis
 - Decrease Contamination

• **Size Reduction**
 - Increase Sensor Density
 - Less Intrusive

• **Cost Reduction**
 - Less Weight
 - Less Power
Potential Applications

- **Leak Detection**
 - Hazardous Gases
 - Helium
 - Refrigerants

- **Air Analysis**
 - Worker Safety
 - Public Safety
 - Chemical Weapons

- **Law Enforcement**
 - Contraband Detection

- **Field Medical Analysis**

- **Process Control**
 - Semiconductors
 - Hydrogen Economy
NASA Applications

- Next-Generation Leak Detection During
 Processing
 Cryogenic Fueling
 Launch Countdown

- Shuttle Engine Monitoring

- Air Analysis
 International Space Station Air Lock
 Shuttle Air Lock

- Process Control
 Martian Fuel Generators
Current Problems

Response Time | Scan Rate | Sampling Density
Stanford Research Systems (SRS) RGA-100

• Linear Quadrupole Analyzer
 Cylindrical Rods: 6.35mm OD
 Rod Length: 11.4 cm
 Inscribed Radius: 2.77 mm
 Frequency: 2.76 MHz

• Pressure = 5×10^{-5} torr

Inficon XPR-2

• Linear Quadrupole Analyzer
 Hyperbolic Rods
 Rod Length: 12.7 mm
 Inscribed Radius: 0.33 mm
 Frequency: 13 MHz

• Pressure = 1×10^{-4} torr
Ferran

- Quadrupole Array System
 - 16 Cylindrical Rods: 1 mm OD
 - Rod Length: 10 mm
 - Frequency = 16 MHz
- Pressure: 5×10^{-4} torr

IonWerks Time-of-Flight (TOF)

- Reflectron TOF System
 - Orthogonal Acceleration
 - Extraction Pulse: 600 V
 - Sampling Rate: 50 kHz
- Pressure: 5×10^{-6} torr
University of Florida Ion Trap (UF-IT)

- Quadrupole Ion Trap System
 Ring Radius: 10 mm
 Stretched Geometry
 Frequency = 2.5 MHz
 No Buffer Gas
- Pressure: 4×10^{-6} torr

Thermo Finnigan Polaris-Q

- Quadrupole Ion Trap System
 Ring Radius: 7 mm
 Stretched Geometry
 Frequency = 1.03 MHz
 Helium Buffer Gas
- Pressure: $1 \times 10^{-3} (4 \times 10^{-6})$ torr
Monitor Group
MG-2100

• Cycloidal Sector System
 B: 0.5 tesla
 Pitch: 1 inch

• Pressure: 5×10^{-6} torr

University of Minnesota
Compact Double Focus MS (CDFMS)

• Double Focus Sector System
 B: 0.75 tesla
 Sector Radius: 20 mm

• Pressure: 10^{-5} torr
Experimental Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Shuttle Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>$\frac{\bar{\gamma}{\text{test, meas}}}{\bar{\gamma}{\text{true}}} \times 100%$</td>
<td>< 10% or 5 ppm, whichever is greater</td>
</tr>
<tr>
<td>Precision</td>
<td>$\frac{\bar{\gamma}{\text{test, meas}}}{\bar{\gamma}{\text{true}}} \times 100%$</td>
<td>< 5% or 3 ppm, whichever is greater</td>
</tr>
<tr>
<td>Limit of Detection</td>
<td>$3 \times \text{zero}^a$</td>
<td>H_2, O_2: 25 ppm; He: 100 ppm; Ar: 10 ppmb</td>
</tr>
<tr>
<td>Response Time</td>
<td>Time required for response from valve change to 95% new reading</td>
<td>10 s</td>
</tr>
<tr>
<td>Recovery Time</td>
<td>Time after valve change to reach 5% of previous sample reading (new sample is zero)</td>
<td>30 s</td>
</tr>
<tr>
<td>Scan Rate</td>
<td>Experiment time / scans</td>
<td>1 s</td>
</tr>
<tr>
<td>System Volume</td>
<td>Sum of individual components</td>
<td>$3.5 \times 10^4 \text{ cm}^3$</td>
</tr>
<tr>
<td>System Weight</td>
<td>Sum of individual components</td>
<td>10 kg</td>
</tr>
</tbody>
</table>

a Theoretical limit of detection
b Measured limit of detection
Experimental Scan

Response (Arbitrary)

Time (min.)

0 5 10 15 20 25

Span

Test

Zero

Test

Zero
Accuracy

Accuracy (Absolute Value) (%)

Hydrogen
Helium
Oxygen
Argon

SRS XPR-2 Ferran Polaris-Q UF-IT TOF MG-2100 CDFMS
Limits of Detection (LOD)

- Hydrogen
- Helium
- Oxygen
- Argon

 LOD (ppm)

- SRS
- XPR-2
- Ferran
- Polaris-Q
- UF-IT
- TOF
- MG-2100
- CDFMS

- Helium
- H₂ & O₂
- Argon

173
Response Time

- SRS
- XPR-2
- Ferran
- Polaris-Q
- UF-IT
- TOF
- MG-2100
- CDFMS

Response Time (s)

- Hydrogen
- Helium
- Oxygen
- Argon

Values:
- SRS: 120, 130
- XPR-2: 130
- Ferran: 150
- Polaris-Q: 130
- UF-IT: 130
- TOF: 210
- MG-2100: 180
- CDFMS: 130

16
Recovery Time

![Recovery Time Graph]

- Hydrogen
- Helium
- Oxygen
- Argon
Scan Time

Scan Time (s)

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Scan Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRS</td>
<td>6</td>
</tr>
<tr>
<td>XPR-2</td>
<td>1.8</td>
</tr>
<tr>
<td>Ferran</td>
<td>7.5</td>
</tr>
<tr>
<td>Polaris-Q</td>
<td>1</td>
</tr>
<tr>
<td>UF-IT</td>
<td>1</td>
</tr>
<tr>
<td>TOF</td>
<td>1</td>
</tr>
<tr>
<td>MG-2100</td>
<td>13</td>
</tr>
<tr>
<td>CDFMS</td>
<td>1</td>
</tr>
</tbody>
</table>
System Volume

![System Volume Graph]

- **Analyzer and Vacuum System**
- **Electronics**
- **Turbo Pump**
- **Rough Pump**

Volume (cm^3)

- SRS
- XPR-2
- Ferran
- Polaris-Q
- UF-IT
- TOF
- MG-2100
- CDFMS
System Weight

<table>
<thead>
<tr>
<th>SRS</th>
<th>XPR-2</th>
<th>Ferran</th>
<th>Polaris-Q</th>
<th>UF-IT</th>
<th>TOF</th>
<th>MG-2100</th>
<th>CDFMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>40</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Analyzer / Vacuum / Frame**
- **Electronics**
- **Turbo Pump**
- **Rough Pump**
Evaluation Chart

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Precision</th>
<th>LOD</th>
<th>Response</th>
<th>Recovery</th>
<th>Scan Rate</th>
<th>System Volume</th>
<th>System Weight</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRS</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>4.3</td>
</tr>
<tr>
<td>XPR-2</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>4.8</td>
</tr>
<tr>
<td>Ferran</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>8.1</td>
</tr>
<tr>
<td>Polaris-Q</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>6.3</td>
</tr>
<tr>
<td>UF-IT</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>4.4</td>
</tr>
<tr>
<td>TOF</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>7.1</td>
</tr>
<tr>
<td>MG-2100</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>8.0</td>
</tr>
<tr>
<td>CDFMS</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>Average</td>
<td>4.7</td>
<td>4.5</td>
<td>4.5</td>
<td>6.2</td>
<td>5.8</td>
<td>3.5</td>
<td>6.0</td>
<td>7.1</td>
<td></td>
</tr>
</tbody>
</table>

1Excluding Ferran and MG-2100
Conclusions

• Various Mass Analyzer Systems Evaluated

• Several Systems Show Promise
 Stanford Research Systems RGA-100
 Inficon XPR-2
 University of Florida – Ion Trap
 Compact Double Focus Mass Spectrometer

• Areas That Need Improvement
 Response Time Recovery Time
 System Volume System Weight

• Future Work
 Investigate Techniques To Improve Systems
 Evaluate Engineering Challenges