

	A	V. I. 1	14/-44-	Weight	Mass
System /acuum Chamber ²	Amps	Volts ¹	Watts	(pounds)	(kilos)
	7.0		170.0	89	40.5
5-Turbo Pumps Under Load 5-Cooling Fans	7.2 0.625	24 24	172.8 15		
DC Backing Pump ³	2	24	48	18	8.2
bo baoking r amp	-			,	0.2
Detection					
Balzers Quad				28	12.7
Balzers Ionizer Controller	0.9	115	103.5	26	11.8
RF Box				11.5	5.2
Rack Mount Boxes (w/cables)					
Turbo Pump Control Box				11.5	5.2
Chopper/Heater/Mult. Supply	2	24	48	7.5	3.4
AC/DC 24 V supply				9.5	4.3
SenTorr P. Gauge Controller	0.1	115	11.5	6	2.7
Data Acquisition					
Rack Mount Computer	0.6	115	69	29	13.2
		Total	467.8	236	107.3

1) All DC powered components can operate with a maximum input voltage of 32 VDC

Weight of vacuum chamber includes fiberglass frame (~12 lbs), cooling fans, pressure gauges and 5 turbo pumps
AC powered diaphragm backing pump (MD60) uses 2.5 amps at 115VAC, weight is 37 lbs.

Mass Calibration

• Ionization efficiency (*IE*) is defined as the ratio of total number of ions per particle by number of molecules per particle. *IE* of nitrate is determined during calibration. *IE* of other species can be estimated from IE_{NO3} by the ratio of the respective molecular weights:

$$\frac{n_s^{e^-}}{IE_s} = \frac{n_{NO_3}^{e^-}}{IE_{NO_3}} \Longrightarrow \frac{MW_s}{IE_s} = \frac{MW_{NO_3}}{IE_{NO_3}}$$

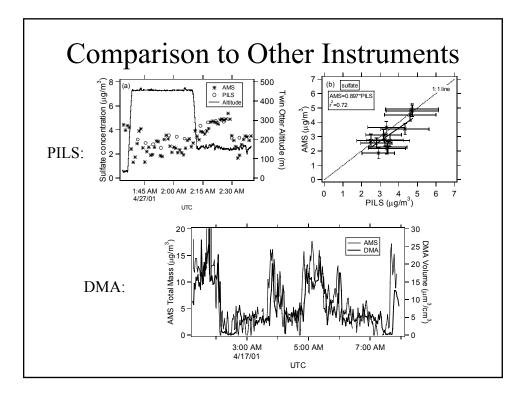
• Calibration factor (*CF*) of nitrate is defined as unity. CF_s of other species is determined by comparing the mass response of the instrument with a known concentration of the species introduced into the instrument during calibration

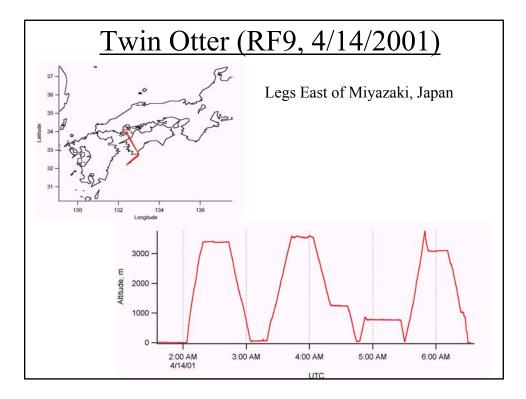
Quantifying TOF Signal

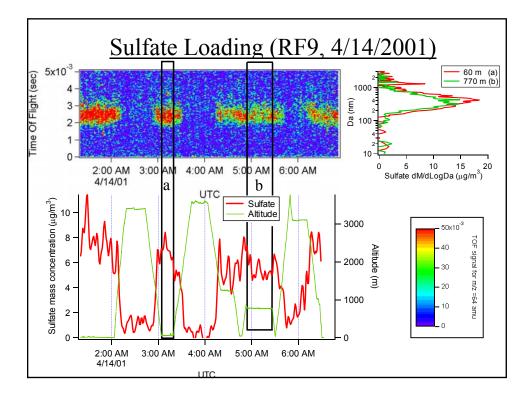
- TOF MODE
 - By using time-step per average signal point and the single ion's signal, one can convert the raw signal to ions/TOF (I_{sf}^{TOF} for each fragment or I_{s}^{TOF} for sum of the fragments)
 - Mass concentration (C_s , $\mu g/m^3$) is obtained by incorporating in the ionization efficiency (IE_s), calibration factor (CF_s), sample flow rate (Q), chopper frequency (f) and chopper duty cycle (D_c): (N_A is Avogadro's number)

$$C_{s} = \frac{I_{s}^{TOF} \cdot CF_{s}}{IE_{s}} \cdot \frac{MW_{s}}{N_{A}} \cdot \frac{f}{D_{c} \cdot Q} = \frac{I_{s}^{TOF} \cdot CF_{s}}{IE_{NO_{3}}} \cdot \frac{MW_{NO_{3}}}{N_{A}} \cdot \frac{f}{D_{c} \cdot Q}$$

 $(CF_{NO_3} = 1, \text{ others determined by calibration})$

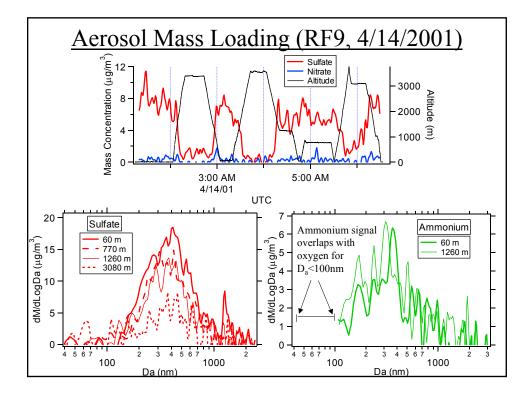

AMS Detection Limits in ACE-Asia

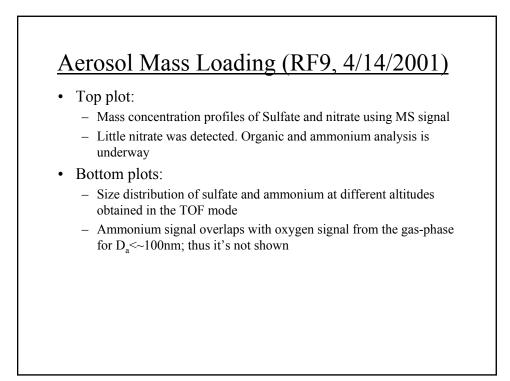

Compound	Estimate Detection limit*	
	$(\mu g/m^3)$	
Sulfate	0.53	
Nitrate	0.12	
Alkane	1.4	
Alkanoic acid	0.39	
Alkenoic acid	1.8	
Alkanol	3.5	
Dicarboxylic acid	0.93	

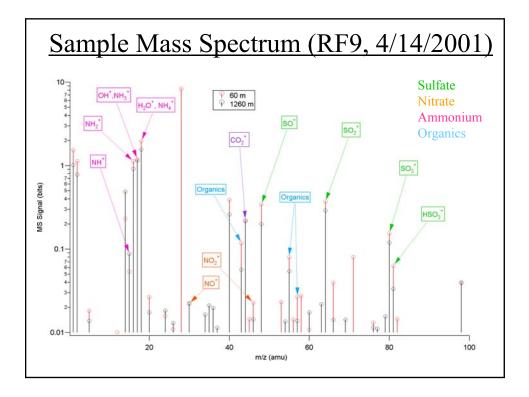

*Detection limit defined as 2σ (not final) for 1min averaging time

References: 1) Seinfeld, J.H., S.N. Pandis, *Atmospheric chemistry and physics: From air pollution to climate change*, John Wiley & Sons Inc., 1998.

2) NIST Mass spectrum data base







Sulfate Loading (RF9, 4/14/2001)

- Top Plot:
 - Image plot for the raw signal from AMS in Time OF Flight mode for a fragment of sulfate (m/z=64) during the flight
 - The more reddish the color, the more intense the signal
 - It shows that going in/out of the different layers, sulfate concentration increases/decreases
 - Also, size distribution of sulfate seems to be uniform in different layers (time of flight is the measure of size)
- Right side plot:
 - By converting the raw TOF signal vs. time of flight to mass concentration vs. aerodynamic diameter, one can get mass distribution
 - The distributions correspond to averaged TOF signal for the constant altitude legs, indicated as "a" and "b".
- Bottom plot:
 - By integrating the mass distribution (dM/dLogD_a) with respect to LogD_a, we can obtain mass concentration. (Independently, one can also convert the raw signal from the Mass Spectrum mode to mass concentration for different species)
 - It shows variation of sulfate concentration with altitude during the flight

Conclusions

- AMS operated successfully on most Twin Otter flights (15 out of 19)
 - Sensitivity to sulfate $\sim 0.53~\mu g~m^{-3}$
- · Submicron aerosols were present in discrete layers
- SO₄ was a major component of submicron aerosols and was observed in all flights
- SO₄ size distribution was relatively uniform for several flights
- Very good correlation of AMS SO₄ mass and DMA volume
- NO₃, NH₄, and organics were detected in some flights
- Future work:
 - Sensitivity improvement
 - Next deployment: July 2002, Florida, CRYSTAL-FACE Project (NASA)

<u>Acknowledgements</u>

- CIRPAS Team: Bob Bluth, Reg Burch, Denis, Roy Wood, Mike Hobble, Nava Roy, Bob Rogell, Richard, Jackie Rosenkrantz, Mike Duncan, and Sara Moore
- JOSS (especially Brian Jackson)
- Office of Naval Research
- National Science Foundation
- Iwakuni Marine Corps Air Station (especially Jim Roberts, Rose Cole, and Lee Chieffalo)
- Jian Wang at Caltech
- Kari Maxwell, Doug Orsini, and Rodney Weber at GeorgiaTech
- Dean Hegg and Song Gao at University of Washington