Implementation of DART and DESI Ionization on a Fieldable Mass Spectrometer

Mitch Wells, Mike Roth, Garth Patterson

Griffin Analytical Technologies, LLC
West Lafayette, IN

September 19th 2007, 6th Harsh Environment Mass Spectrometry Workshop, Cocoa Beach FL

NEW THREATS. NEW THINKING.
Griffin - Overview

Timeline:
- Founded in 2001
- Partnered with ICx Technologies in 2006

Griffin’s Location:
- Purdue Research Park
 West Lafayette, IN USA

Size:
- 10,800 Square Feet
- 41 full time plus 6 part time
- 2/3 staff is technical (scientists and engineers)

Technology:
- Fieldable Mass Spectrometers
- Flexible Inlet Technologies
- Sophisticated Software
Griffin Analytical makes fieldable mass spectrometers for the accurate identification of known and unknown chemical threats.

How can the products be used?

- Force protection
- DoD operations
- Hot zone deployment
- Terrorism threats
- Urban air monitoring
- Environmental monitoring and analysis
- Mobile laboratories
- Site assessments and remediation
- Real-time monitoring
- Emergency response
- Petrochemical troubleshooting
- Quality assurance
- Application and method development
- Research & teaching tool
Griffin Sample Inlet Technology

Ambient Sample – solid, liquid, or vapor at atmospheric pressure (760 Torr)

New Developments: Atmospheric Pressure Ionization

Low Thermal Mass GC

Direct SPME

Direct Leak

MS Vacuum Environment – 1×10^{-4} Torr
Griffin R&D projects

- External Ionization – Atmospheric Pressure Ionization
- Alternative to GC for sample introduction to the MS
- Direct sampling and ionization of components in liquids, on surfaces, etc.
- Explosives detection applications
- Premium class on-site bioanalytical applications
- Requires an API interface for the MS

Electrospray ionization (ESI)

DESI

DART
Griffin API Interface

Three stage vacuum system

First Vacuum Region

Second Vacuum Region

Third Vacuum Region

Ion focusing lenses

octapole

capillary

skimmer

~8 cm

~20 cm
Griffin API Interface

Three stage vacuum system

Atmosphere
~150 mL/min

First vacuum region
~700 mTorr

Second vacuum region
~10 mTorr

Mass spectrometer high vacuum
2 x 10^{-4} Torr (He)

Alcatel MDP5011 drag pump

Main port

Pfeiffer TMH071

Auxiliary port

KNF 813.4

KNF N920

~8 cm

~20 cm
Griffin API Interface

First vacuum region

Ion sampling capillary
Tubular focusing lens
Ion sampling orifice

[Diagram of the Griffin API Interface with labeled components: lens, sampling orifice]
Griffin API Interface

Second vacuum region

Octapole ion guide with Ardara RF supply
Griffin API Interface

Third vacuum region

![Diagram of the third vacuum region showing lens 1 stopping curve and experiment vs. SIMION injected count.](image)

Lens 1 Stopping Curve

Experiment vs. SIMION Injected Count

- **m/z 186 Arb Peak Height**
 - Experiment
 - SIMION 6eV, Injected

![Graph showing lens 1 voltage against m/z 186 injected count.](image)
Griffin API Interface

Third vacuum region - RIT simulations
Griffin API Prototype Instrument

Mass ≈ 45 kg
Electrospray of drug mixture standard

- Methamphetamine (M+H)^+
- Cocaine (M+H)^+
- Heroin (M+H)^+
Griffin ESI - Myoglobin
Electrospray of dimethyl methylphosphonate (DMMP)
Calibration Curve for DMMP

Griffin ESI - CW Simulants

LOD ~ 20 ppb

DMMP concentration (ppb)

abundance (arb. units)
Griffin and DART

Direct Analysis in Real Time (DART)

TNT detected from fingerprints

Nitroglycerine detected on a necktie
Griffin and DART

IonSense DART source on the Griffin API prototype
Griffin and DART

DART MS of Altoid Mints

- Cinnamon
- Spearmint
- Peppermint
- Wintergreen
Griffin and DART

Ibuprofen Tablet

- Negative Ion Mode
- Positive Ion Mode

207 Da
205 Da

100 120 140 160 180 200 220 240 260 280 300

m/z
Methyl Salicylate Vapors

- **Negative Ion Mode**
- **Positive Ion Mode**

![Graph showing mass spectra for Methyl Salicylate Vapors with peaks at 151 Da and 153 Da.](image)

m/z range: 75 to 215
DNT Film on Glass Rod

- Negative Ion Mode
- Positive Ion Mode

181 Da
183 Da

m/z
Griffin and DART

Detection of TNT on Paper
Desorption Electrospray Ionization (DESI)

RDX detected on a suitcase handle
Griffin and DESI - Drugs of Abuse

DESI of methamphetamine spotted onto a glass slide

Prosolia OmniSpray® Source on Griffin API prototype

methamphetamine (M+H)^+
Griffin API future directions

Next prototype
- Installed in a 400 case
- Improved pumping
- Improved ion transmission and trapping
Griffin API future directions

Miniaturized DART gun and controller

- smaller form factor gun
- 24 V operation
- Optimized for nitrogen
- single PCB controller
- Includes Gas/Ion Separator
Conclusions

- Griffin has field portable GC/MS/MS and direct-sampling MS/MS systems for homeland security applications
- Development of atmospheric pressure sampling systems are underway to leverage novel new ionization sources
- A mobile API-equipped instrument has been constructed
- Preliminary data with ESI, DART, and DESI have been acquired for a variety of compound classes
Acknowledgements

- The Griffin engineering and science teams for assistance with this work
- Ryan Danell (Danell Consulting) and Metacomp Technologies
- Brian Musselman, Joe Tice, and Doug Simmons from IonSense
- Brian Laughlin and Justin Wiseman from Prosolia
- Nari Talaty, Chris Mulligan, and Graham Cooks from Purdue University
- Griffin thanks the National Science Foundation (Grant 0450512) and Air Force Research Labs (Contract FA8650-06-C-5914) for financial support.