Switched Ferroelectric Plasma Ionizer (SwiFerr): A robust source for ambient mass spectrometry in Harsh Environments

Evan L. Neidholdt and J.L. Beauchamp
California Institute of Technology, Pasadena, CA 91125

Harsh Environment Mass Spectrometry Workshop 2009, Santa Barbara, CA
Switcheed Ferroelectric Plasma Ionizer

• A novel ionizer for ambient mass spectrometric analysis developed at Caltech.1,2

• In this presentation
 – Plasmas in ambient mass spectrometry and previous work with ambient pressure plasmas
 – Design and Operating Principles of SwiFerr
 – SwiFerr used for organic vapor analysis
 – Pharmaceuticals analysis

Plasmas in Mass Spectrometry

- Techniques include DART, DAPCI, dielectric barrier discharge, etc.
- Example at right, Low temperature plasma probe (Cooks)
- Hollow Cathode (JPL)
- For ambient mass spectrometry: analysis without advance sample preparation, at ambient pressure

SwiFerr is a plasma based ionizer for ambient mass spectrometry which relies on the ferroelectric properties of barium titanate to produce the plasma.
Ferroelectric Materials

- Asymmetric crystal structure of the material defines a net dipole in the unit cell, which imparts a spontaneous polarization for the bulk crystal.
Details on Polarization for BaTiO$_3$ (Unit Cell)

- Orientation of P_s is dependent on crystal structure.

\[P_s \] = Polarized with [001]
\[P_s \] = Polarized with [111]
\[P_s \] = Polarized with [011]

$= \text{Ba}$
$= \text{Ti}$
$= \text{O}$

$>393 \text{ K}$
$393 > T > 278 \text{ K}$
$278 > T > 183 \text{ K}$
$T < 183 \text{ K}$

Structures1 of the 4 different phases of BaTiO$_3$ and the phase transition temperatures. Position of O and Ti atoms defines polarization. Must choose phase according to experiment to be performed.

Achieving Polarization Switching (Electrodes)

- Electrode arrangement varies by experiment; we use a solid electrode on the back side and a grid for the front electrode.
Plasma Formation in SwiFerr Ionizer

Plasma arises due to the electric fields created by the presence of a grounded grid in close proximity to the charged crystal face. Low light photography shows the plasma occurring most strongly near the grid wires.
Electrical probing of plasma/discharge

By inserting a resistor in the voltage return path, discharge current that would have flowed to ground can be measured.
The discharge occurs during a half period of the excitation voltage, and is usually shorter than \(\frac{1}{4} \) period. Thus, the timescale is proportional to the drive frequency. At this juncture, the source is not continuous.
\[T_{\text{discharge}} \leq \frac{1}{4f_{\text{excitation}}} \]

\[f_{\text{discharge}} = 2f_{\text{excitation}} \]
Switched Ferroelectric Ionizer

Neutrals are introduced into the reaction volume, where a plasma creates reagent ions that ionize trace species. Ions then flow into the inlet of an ion trap mass spectrometer.

Detail of ionizer region. A high voltage AC waveform is applied to the rear electrode. A plasma forms around the grid, held at ground potential.
Details on source ruggedization

- Initial constructs of the device suffered from sample cracking. Cause of this was determined to be a non-rigid rear electrode as well as rigid clamping of the sample; piezoelectric vibrations caused mechanical stress.
• The addition of the tension screw and spring, as well as the contact pad and o-ring contribute to rigidity and vibration isolation in the source.
Fabrication sequence

1. [001] BaTiO3 (MTI Crystals)
2. Apply Scotch tape mask
3. Application of silver epoxy and mask liftoff
4. Application of contact pad on top of silver epoxy.
SwiFerr attached to inlet of Thermo LCQ Deca XP
Proposed SwiFerr Ionization Mechanism:

Atmospheric H₂O → (H₂O)ₙH⁺ → (H₂O)ₙOH⁻

Switched Ferroelectric Plasma

Chemical Ionization!

M + (H₂O)ₙH⁺ → MH⁺ + (H₂O)ₙ

Proton Xfer Rxns

Mass Spectrum
SwiFerr Organic Vapor Analysis

MH

m.w. 185.1

Acetone

m.w. 58.0

TEA

m.w. 101.1

TPA

m.w. 149.1

TBA

m.w. 185.1
Pyridine was detected at concentrations approaching part-per-billion levels, suggesting ultimate sensitivity for SwiFerr to be in that range.
Aerosol Sampling and Analysis with SwiFerr

Pneumatic sampler used for sampling solids aerodynamically, injecting and then ionizing using SwiFerr.
Pharmaceutical Analysis with SwiFerr

- Neat powder is introduced to the source as the crudest approximation of sampling.
- Versatility!
Power consumption of SwiFerr

- For the same signal level, more efficient operation occurs at lower frequency.
Voltage threshold of ionization

- Signal scales with the square of the applied voltage, implying the crystal acts as a resistive load.
- Above 1 kHz, there is no difference in signal gain between the operation frequencies.

$$\text{sqrt(Intensity)} (\text{Arb})$$

peak to peak Voltage (V)
Optimal Operation

- Minimum operation frequency determined by power budget and detector duty cycle

Range: 0.1 W and up

LCQ: Duty cycle: 3 scans / sec.
IMS: Dependent on ion gating
DMS: Low detection duty cycle—higher frequency operation may be required.
TOF: Synchronization of pulsing with pusher

Slope = 0.19 W kHz⁻¹
Y-intercept ≠ 0, minimum absolute power is approx. 0.08 W
Summary: SwiFerr Ion Source

- Able to analyze a variety of substances with minimal sample preparation
- Low power consumption and simplicity of design
- Ease of miniaturization
- No consumables
- Long term autonomous operation
- Applications: Harsh environments, hazmat detection, illicit drug detection, CBW analysis
Acknowledgements

- Pfizer Corporation - Graduate Research Fellowship
- JLB Group at Caltech
- Funding Sources:

Beckman Institute at Caltech

CHE-0416381