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Mass Spectrometer Miniaturization

People have been trying to make high
out of the laboratory....into the plant performance small mass spectrometers
for over 60 years!

CEC's two companion instruments . .. Types 21-610

e Limited success because:
f 1. Throughput vs. resolution tradeoff
and 21-620 . . . have !:.zki:n Im?:lgg::;;n::f;f;:::c . . . . .
:::c‘:':lrll;I:p::‘:‘:io::::::;;:‘:a:}:r:: this analytical method d u rl n g m I n la t u rl Zat I O n

practical for industrial use, As a process-stream an-

alyzer, the mass spectrometer is exceptionally ver- . . n S
satile, provides stream-composition information on 2 H gh p q | I I t
the spot for regulating plant start-up procedures, * I OWer re u I re e
optimizing operations and products, and minimizing

process interruptions. 3. Limited detector tEChnO|OgieS
SEVERAL MODES OF OPERATION

Both 21-610 and 21-620, together with available
accessory systems, work on cither a batch or contin-
uous basis, permit . ..

@ continwons determination of a single component

® alternate determination of several ¢

[Detector Plane

@ automatic scanning of a complete specirum

@ programming up 1o $ixomass numbers for auto-
matic, repetitive monitoring

® aliernate monitoring of more than one process

COMPANION INSTRUMENTS stream o h £ ; ding. "ﬂh'i‘"s»

Both the 21-610 and 21-620 Mass and timing systems.

Spectrometers are flexible and simpli-

fied, need only 115 volts and a small  APPLICATION...INSTALLATION
supply of cooling water, are easily . . 3
maoved around the plant. The Type 21- CEC's Application Engineers offer without charge

610 is useful for monitoring streams  experienced help in fitting the ma: trometer to
: g P ication. in addiion. al m | Mass analzyer |

;‘;‘L‘fgmw';c"_'g ‘: '"““_f['";'h‘IT-'f'fj your specific application. In addition, all mass spec-
“C}c]oi{?ﬁ%%l:f.ineg"“;:;n}ciplf:wifpm. trometers are installed and put into initial operation
abie for accurate readings from mass 2 by a skilled CEC Field Service Engineer. Send today

to mass 150, for Bulletin CEC 1824B-X1. - - ..
Consolidated Electrodynamics

|
Sormerly Consoli incering C . I ELECTRONIC oL .
' I Corporation | \nsTrRUMENTS FOR Conventional Instrument Miniature instrument
300 North Sterra Madre Villa, Pasadena, California « SALES AND SERVICE oFpices in; | MEASUREMENT
Albuguerque, Atlanta, Boston, Buffalo, Chicago, Dallas, Detroit, New York, Pazadena, Philadelphia, | AND CONTROL
San Francisco. Seattle, Washington, D.C. |

VOLUME 28 XO. 4 APRIL 1086 Reduced throughput for same
resolution

Image adapted with permission from: Consolidated Electrodynamics Corporation, Anal. Chem., 1956, 28 (4), pp 15A-15A. Copyright
1956 American Chemical Society 2



Mass Spectrometer Miniaturization
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Four Miniaturization Enabling Technologies

1) Aperture Coding: increased throughput, no loss in resolution
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2) Microfabricated CNT field
emission ion source

Carbon Nanotube Forest
100 um

lon source with Coded Aperture

See poster by Raul Vyas
For more info on CNTs

3) Focal plane array detector 4) Cycloidal mass analyzer




 What is computational sensing and aperture coding?
 Why use a cycloidal mass analyzer with aperture coding?

e What is the performance of CAMMS-ES (Coded aperture miniature mass spectrometer
for environmental sensing)?



What is Computational Sensing?

 Measurements are a convolution of the actual spectrum and the system response

M=1T %S

Conventional Sensor Computational Sensor

 Make design choices so that the instrument | Design the system response to maximize
response =6 parameters of interest

~ _ T—1
M~Jd*S P =F""|F|m]/F[snist]]
e Deconvolve the system response from the
m =~ S measurements to estimate the spectrum

§=F "' [F[m]/F[f]

Design choices in conventional instruments actually limit system performance

Availability of cheap fast computing power enables improved system performance (and miniaturization) .



Computational Sensing and aperture coding
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Amsden, J.J., Gehm, M.E., Russell, Z.E., Chen, E.X., Dona, S.T.D., Wolter, S.D., Danell, R.M,,

Kibelka, G., Parker, C.B., Stoner, B.R., Brady, D.J., Glass, J.T.: Coded apertures in mass
spectrometry. Annu. Rev. Anal. Chem. 10, 141-156 (2017)




 What is computational sensing and aperture coding?
e Why use a cycloidal mass analyzer with aperture coding?
e What is the performance of CAMMS-ES?



Cycloidal mass analyzer and perfect focusing

AP R II. 1., 19338 P I Y S1CA L R E WV I X W VOILLUMIE 5 3

A New IMass Spectrometer with Improved .Focusing Properties

WAILKER BLEAKNEY AND JoaN A. HrirrPrLE, JTRr..
Palrnier Phvyvsical Laboratory, Prirncetorr Universiiy, Princetorr, New JTersew

(Received February 7, 19338)

The use of crossed electric and magnetic fields for a mass spectrometer is discussed. It is
shown that this arrangement has perfect focusing properties; the focusing depends only on the
#2z/e of the ion selected, and not on the wvelocity or direction of the charged particles entering
the analyzer. The projection of the path in the plane perpendicular to the magnetic field is a
trochoid. The theory necessary for the design of the apparatus is developed in some detail.
A method of drawing the trochoids is described as well as a chart which is a great help in
rapidly correlating the many wvariables. It is shown that there are two types of path to be
considered, the curtate and the prolate. The former was employed in the first model constructed
and gave encouraging results in spite of some structural difficulties encountered. The second
apparatus was the prolate type and worked exceptionally well. Some typical mass spectra are
shown. It was found that a distribution in energy amounting to 50 percent of the potential
accelerating the ions had no effect on the resolution.

mass spectrometry

e “..this arrangement has perfect focusing properties.”

e Cycloidal mass analyzers were utilized in the 1950’s and
1960’s

 Need array detector to fully realize the potential of the
cycloidal mass analyzer




Cycloidal Mass Analyzer

™

Single Slit )
. -
Cycloidal Mass Analyzer g : I
| ~ 2 Calibrated m/z
E=-Ey &
L s [
B=-Bz L N m 2rzE
Position on detector d = : >
Z B
Detector
The distance along this x-axis,
lon Source known as the pitch, is described
by the following
' equation:
Where:

a, = distance along x - axis
E = electric field strength

B = magnetic field strength
m; = mass of ion

g = charge onion

d = position of the aperture

10



Coded Aperture Cycloidal Mass Analyzer

S
6X more
. throughput
Ct?ded Aperture 2 e
Cycloidal Mass Analyzer g resolution!
= >
|IE - _EY 5 Reconstructed m/z q = m; 27E
S - B3 7 'z B’
B=-B7? T_I_I_I_I_I_I_)
Position on detector
Detector
Requirements for a
Cycloidal coded aperture
mass spectrometer
1. Electric and magnetic
field uniformity
y 2. Requires small ion

source

3. Requires an array
detector that functions
in a magnetic field

11



Expected mass range and resolution
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CAMMS-ES

0.3 T magnetic field

10-45 amu

25-120 amu

For methane and BTEX detection

See Kat Horvath’s talk for
Work on increasing mass range

The mass range and resolving power of C-CAMMS depends on the electric and
magnetic field magnitudes and the width, pixel size, and position of the detector
relative to the ion source.

12



CAMMS-ES mass analyzer section view

Opposed dipole magnet CAMMS-ES
7 sdi, Sample inlet 0.3 T magnetic field
. 10-45 amu
25-120 amu

For methane and BTEX detection

Position (mm)

See Kat Horvath’s talk for
Work on increasing mass range
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Capacitive transimpedance amplifier detector array

Each detector finger has a
separate preamplifier, logic
Logic and sample and hold on the
custom IC

4 gain levels
Each pixel gain can
be set individually

15 pV/e" at high gain
Dynamic range 10! using the 4

e
e
e
e e
e
i

Sample

‘ | and Hol

Custom CMOS integrated circuit
3.3V, 0.35 um process

for 100% fill factor)

R R Ry

gain stages
Limited cross-talk
Nondestructive readout

Detector fingers (multiple layers via CMOS

Felton, J. A., G. D. Schilling, S. J. Ray, R. P. Sperline, M. B. Denton, C. J.

Barinaga, D. W. Koppenaal and G. M. Hieftje (2011). "Evaluation of a fourth-

generation focal plane camera for use in plasma-source mass spectrometry."

Journal of Analytical Atomic Spectrometry 26(2): 300-304. 14




CAMMS-ES Laboratory prototype proof of concept

Power Supply
Vacuum Pump System Electronics

Mass Analyzer
Pressure Gauge




 What is computational sensing and aperture coding?
 Why use a cycloidal mass analyzer with aperture coding?
e What is the performance of CAMMS-ES?

e Does aperture coding actually work?
 What is the sensitivity for toluene in air?

16



Proof of concept data
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"Proof of Concept Coded Aperture Miniature Mass Spectrometer Using ara%oidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron
lonization Source, and an Array Detector,” J. J. Amsden, P. J. Herr, D. M. W. Landry, W. Kim, R. Vyas, C. B. Parker, M. P. Kirley, A. D. Keil, K. H. Gilchrist, E. J.
Radauscher, S. D. Hall, J. B. Carlson, N. Baldasaro, D. Stokes, S. T. Di Dona, Z. E. Russell, S. Grego, S. J. Edwards, R. P. Sperline, M. B. Denton, B. R. Stoner, M. E.
Gehm, and J. T. Glass. J Am Soc Mass Spectrom 29, 360-372. (2018) 10.1007/s13361-017-1820-y
17



Spectral reconstruction results
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>10x increase in signal and improved resolution

However, reconstruction exhibits artifacts as the system response is not uniform across
the detector due to alignment s




e Electric and magnetic field non-uniformities

Why are there artifacts in the reconstruction?

e Depth of focus and Alignment of detector with mass analyzer focal plane

Depth of focus for ion source with large dispersion
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Improving field uniformity by repositioning the ion source

Original Electric sector Improved electric sector
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"Effects of Magnetic and Electric Field Uniformity on Coded Aperture Imaging Quality in a Cycloidal Mass Analyzer," D. M. W. Landry, W. Kim, J. J. Amsden, S. T.
Di Dona, H. Choi, L. Haley, Z. E. Russell, C. B. Parker, J. T. Glass, and M. E. Gehm. J Am Soc Mass Spectrom 29, 352-359. (2018) 10.1007/s13361-017-1827-4

To improve field uniformity, place the ion source between electric sector electrodes

20



Reduce source dispersion and increase depth of focus

Original ion source configuration with CNTs Current ion source configuration with
filament

My [a01% WSS 29May/2019 11:11:52
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— LYLBOTIE 4]

Trajectories: (0.576,6335209E-26"(VEL"2)™(0.001"2))/(1.6021766 2-19)
— 3.352520E+1

- 2 5000000+1

M L.S00000E+1
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Academic

lons generated over a smaller potential gradient -> less dispersion -> larger depth of focus
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Improve alignment by redesign of the electric sector

Old Analyzer New Improved Analyzer

22



Miniature prototype

CAMMS-ES
* 40Ibs, 40 W
* Mass range 10-120 amu
* Membrane inlet
e Goal 1 ppb detection limit for toluene in
“real time” -



Laboratory prototype data
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New improved prototype data
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Coded toluene mass spectrum

#10%
] m/z = 91/92 for toluene

37 — Experimental Data
— Simulated Coded Data - NIST
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See Tanouir Aloui’s talk for how we solved this problem y
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S N
U N )
1 | I 1 1 1 | I 1 | 1 | I | 1 1 | I | 1 | | I | 1 | | I 1 1 1 1 I | 1

—

O
0

x10

Coded Toluene (100 ppm in dry air) after fixing charging issue

Experimental Data
‘Simulated Coded Data - NIST

S-11

e Electron ionization current =1 pA
e 7 Detector acquisitions (~32 ms of
collection time)

400 600 800 1000 1200 1400 1600

Pixel Number

Loss in intensity at higher m/z — due to out of plane velocity components due to thermal energy of ions

50 micron slit in S-11 aperture not fully illuminated
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100 ppm Toluene spectrum after reconstruction

Reconstructed vs Ideal NIST Mass Spectra
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Coded toluene spectrum at ~100 ppb

10

Electron ionization current: 9 pA
50 Detector Acquisitions (230 ms)
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Signal to background ~20:1 -> 5 ppb or better detection limit
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Summary and future work

Computational sensing can help with the throughput vs resolution tradeoff encountered
In miniaturization

CAMMS-ES
e 401bs, 40 W
* Mass range 10-120 amu
e Toluene detection limit: ~5 ppb (goal 1 ppb)

What is next?

Portable stable isotope ratio analysis of CHNS
Single particle analysis
Increase mass range and further improve resolution

Further miniaturization

30
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