Chip Scale Mass Spectrometry

...Yet another contender for Harsh Environments? Or can it help redefine "Harsh Environments"?

Presented at – The 14th Harsh-Environment Mass Spectrometry Workshop September 28, 2022

Ashish Chaudhary (Ph.D.) (Founder and CEO) Detect-Ion LLC <u>Ashish.chaudhary@detect-ion.com</u> Tel: (727) 251-0889

3802 Spectrum Blvd. (Suite 128) Tampa, FL 33612 www.detect-ion.com

This research is based on work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via FA8650-17-C-9108, FA8650-19-C-9100 and 20120800003. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either express or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

("Detection")

Mission: Next Generation Sensor Development For Enhanced CBRNE Sensing

Vision: Bring Traditional Mass Spectrometry Performance to the Masses

- Small business technology startup (October 2021)
- Technical team hails from SRI International
 - Performers on IARPA MAEGLIN and DARPA SIGMA+ CWMD programs
- Inducted into the Tampa Bay Technology Incubator (TBTI) and housed on USF Tampa campus
 - Dedicated laboratory space

Detect-Ion LLC

- Onsite rapid prototyping
- Access to shared high-value lab resources through the TBTI program
- Florida Hi-Tech Corridor Matching Funds

DETECT-ION 🔅

Motivation: Disrupting the Monotonic SWaP vs. Performance Trade off

Research Themes that enabled ACHILLES

DETECT-ION 🔅

~10 L

Roadmap

Half a lab!

Lots of ancillaries

17.4 L

ACHILLES (TRL-5/6)

Technology Highlights

- World's lowest Swap-C [TD-GC-MS] platform
- High sensitivity validated for >200 VOCs
- Chemical portfolio: semi-volatile and volatile organic compounds (VOCs) including, but not limited to, common solvents, precursors, TICs, TIMs, CWA surrogates, and explosives related compounds (ERCs).
- Detection algorithm leverages separation (RT) and near 1-amu resolution(m/z) mass spectral signature
- Similarity with NIST mass spectral libraries

Independent Government Validation

- 100% (+ true known) in NRL test campaign*
- Successfully flight-testing for USAF/AFRL
- Grand Central Station (NYC) under DHS CBT
 program

*DeWitt K. "Advancements in compact gas collection and analysis from IARPA's MAEGLIN program." CBRNE Sensing XXI. Vol. 11416. International Society for Optics and Photonics, 2020.

DETECT-ION 🔅

Miniaturization of ion traps in micromachined high-density arrays has led to low-SWaP MS design

We achieved near 1-amu resolution

Good mass spectral resolution is key to accurate chemical ID in real-world clutter environment

~200 traps operated in unison; while maintaining 1-amu mass resolution for the collective signal from the array

200-pixel chip-scale ion trap array

High-density chip-scale ion trap array with distributed localized ion trapping across 200 traps overcomes the peak broadening due to space-charge and ionneutral collision effects that results in poor resolution of high-pressure miniature ion traps.

Partial mass spectrum of Trichloroethylene 0.24 Filtered Data High-res TOF data of TCE Baseline Point Data 0.22-Raw Data TCE (M) **FWHM 1.27** 0.2-TCE (M+2) 0.18-AMU: 116 0.16-Intensity: 0.0370 TCE (M+4) Nutrensity 0.14-TCE Molecular Structure 0.1 0.08-0.06-0.04-0.02-0-110 120 130 250 260 AMU

Chip Scale MS: Limits of Detection (LOD) (nanogram)

• Chip-Scale MS has been demonstrated for ~200 chemicals with diverse chemical classes

• These LODs are 10-15x better than currently fielded systems (typically 1-10 ng)

ACHILLES (ppb may be more interesting than ng)

	Sampling time (s)			
	120 s	60 s	30 s	LODs
Toluene	3.23	6.45	12.90	µg/m³
	0.86	1.71	3.42	ppbv
DMMP	17.25	34.5	69	µg/m³
	3.39	6.79	13.58	ppbv
DEMP	81.45	162.9	325.8	µg/m³
	13.07	26.15	52.29	ppbv

- LODs of chemicals listed above are a good representation of the LOD range for the volatile organic compounds (such as toluene) and semi-volatile organic compounds (such as DMMP and DEMP).
- ACHILLES can be operated with a wide range of sampling time to fit with the detection requirements.
- Concentrations higher than the range mentioned above will be detectable with a slight compromise in the mass spectral resolution. Additionally, the sampling time can be optimized for the target range of concentration, as needed.

Our GC split throws away >96% collected molecules; Only 3-4% reach the MS for detection

Sneak peak: We have figured out how not to do that!

DETECT-ION 🛒

- µMS produces mass spectra similar to NIST libraries
 - Rapid library development for >100s of chemicals
 - "Gotchya's" due to minor deviations
 - In MAEGLIN we developed custom library/chemical
- ML model could enable an "infinite library" platform

ACHILLES: System stability -> Quantification and Identification

Average RSD (intensity) across all six chemical components ~ 10%

Average RSD (Intensity) across all six chemical components ~10%

Important for absolute and relative quantification of VOCs

Good RT stability (Std dev < 0.25 s)

Important for identification

140.00 150.00 MD2 Time (s)

Intensity: 5.64

Identification Algorithm

Approach/Status:

- 2D GC-MS data
- Pre-developed library cards
 - Curated identification based on "maximally disjointed" AMU peak positions
 - Some adducts (evolving)

Process

- Background subtraction
- Noise reduction (Savitzky-Golay, FFT etc.)
- Peak finding, centroiding
- RT and AMU window threshold optimization

Key achievements so far:

• Low P_{fa} (1 - 2%)

- Repeatable detection of co-eluting chemicals
- <1-min analysis time (~133 cards)

Full 2D Map of processed GC-MS data

Library cards examined w.r.t. RT

9 Library Chemicals Detected (X det? No; Y det? No; Pfa=0.00%)

Deployment/Use-Case

Outdoor Sampling (NRL)

Tropical Bay (NRL)

Mobile Deployment (Boston)

Breath Diagnostics

Grand Central Station (NYC)

Dehumidification stage

Water sample

ACHILLES as Water Sensor

© 2022 DETECT-ION. All Rights Reserved.

USAF CBRN Flight Testing (1/3)

- <u>Objective</u>: Real time measurement of Methyl Salicylate (MeS) with different flight maneuvers to understand the concentration change in a low altitude flight mode
- ACHILLES was operated during the flight (including take-off and landing) and was co-located with COTS chemical sensors
- During test, the forward cockpit hatch and both paratrooper doors were opened to purge the plane of the test compound

ACHILLES

USAF CBRN Flight Testing (2/3)

Methyl Salicylate (MeS) is a common chemical agent surrogate

DETECT-ION 💌

USAF CBRN Flight Testing (3/3)

Major achievements/takeaways

- ACHILLES measured MeS concentration trends which corroborated with the flight maneuvers and matched with the trend measured by the co-located COTS PID (PPBRAE4 detector)
- During the tail end of the exercise ("soak"), ACHILLES was able to detected the onset of rise in concentration (MeS outgassing from aircraft surfaces due to tarmac temperature), which were missed by the COTS
- As mentioned by the activity lead, AFRL had flow COTS mass spectrometers in the past, but those platforms suffered from failure modes during the flight

Harsh Environments (Requirements)

- Low system latency requires intelligent inputs for optimal sensor operation (Avoid saturation but maintain sensitivity)
 - > Can complementary ionization enable a shorter GC method?
- Sampling to final answer (deconvolution, identification, quantification etc.)
 - > Can we make the cleaning cycle intelligent based on signal detected?
- > Ability to expand the libraries and move to a "training free" paradigm
 - > Can an AI/ML model bridge the gap b/w ACHILLES and NIST libraries?
- Long endurance strategic emplacements limits serviceability
 - \succ We are investigating N₂ and eventually "ambient air" as the consumable

Summary

- ✓ Chip Scale Mass Spectrometry shows a good promise to improve the state-of-the-art of fieldable trace chemical sensing
- ✓ There is room for further miniaturization and ruggedization
 - ACHILLES is the result of first prototype integration
 - Vacuum pump solution is an under-explored research theme
- ✓ Beyond hardware optimizations, software and application-specific AI/ML algorithm will be key areas of development necessary to reach a minimal viable product
- ✓ Detect-Ion is diversifying ACHILLES in areas of water security, health diagnostics, environmental monitoring

Thank you!

© 2022 DETECT-ION. All Rights Reserved.