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Try Simple Geometries versus Synthesis 

We used to be limited to simple machined objects, e.g cylindrical tube, round rods, etc.

Then we started to be able to surface machined parts from simple equations at great cost.

However, it is now reasonable to make complicated shapes with CNC machining, and even more

With additive manufacruring.

This means that if we can sythesize the fields required for and instrument, 

then we can create the surfaces to create those fields. So, we need tools,

that can mathematically generate fields, parametrically optimize the performance,

create the real surfaces with truncation, slits, and possible defects, then analyze

The real field to compare to the ideal fields and possibly adjust to compensate.

To this end we will show a method to analyze the multipole components.



Fourier-Taylor Multipole analysis

A multipole expasion about the trapping center can be written as,

𝑉 𝑟, 𝜃 =
𝑉0
2


𝑛=0

∞

𝐶𝑛 ൗ𝑟 𝑟0 cos(𝑛 𝜃),

So, if we tabulate values of the potential at points evenly spaced around a circle od radius r, 

then we have a Fourier cosine series and we can get the multipoile coefficients fo that radius.

This approach is easily generalized to the fourier cosine- sine series to determine rotated multipoles 

Furthermore, if we do this for a series of radii then we have the coefficients as a function of Τ𝑟 𝑟0, 

And hence we may fit a Taylor series in Τ𝑟 𝑟0 for each coefficient.  



FFT Multipole analysis using an equation

𝑉 𝑟, 𝜃 =
𝑉0
2

ൗ𝑟 𝑟0
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FFT Multipole analysis using SIMION’s bilinear 
interpolation of array filled from equation
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FFT Multipole analysis using bicubic 
interpolation of array filled from equation
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The Generalized Poisson Solver

From Maxwell’s equations we have,

∇ ∙ 𝐷 = 𝜌,
If 𝐷 = 휀𝐸, then ∇ ∙ 휀𝐸 = 𝜌, and therefore,

∇ ∙ 휀∇𝜑 = 𝜌.
Which is the generalized Poisson’s equation.

Similarly starting with conservation of charge, ∇ ∙ 𝐽 = −
𝜕𝜌

𝜕𝑡
and Ohm’s Law 𝐽 =

𝜎𝐸, we have,

∇ ∙ 𝜎∇𝜑 = −
𝛿𝜌

𝛿𝑡
Which the same form as the generalize Poisson’s equation. Simion can now 

solve equations of this form.

We can also solve for the steady state temperature by 𝛻 ∙ 𝑘𝛻𝑇 = 0
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Solve 𝛻 ∙ (𝜎(𝑥, 𝑦)𝛻𝜑)=0  
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Solving the potential in a resistive glass tube.

Figure 1: Scheme for mapping flat solution with periodic boundary conditions to the cylindrical resistive 

glass tube. Resistive glass tube showing an arbitrary cut-line for the unfolding to a flat array, (b) 2D array 

showing the distortion of the potential due to a small insulating defect.



Solve 𝛻 ∙ 𝑘𝛻𝑇 = 0
𝜎0(𝑥, 𝑦)/(1 + 𝛼𝑅 𝑇(𝑥, 𝑦) − 𝑇0 )

𝜎(𝑥, 𝑦)

𝑇(𝑥, 𝑦)

Solve 𝛻 ∙ (𝜎(𝑥, 𝑦)𝛻𝜑)=0  

𝜑(𝑥, 𝑦)

(a)

(b)

(c)

(d)

(a) resistive glass assembly with inlet and outlet lenses. (b) 2D array of the film temperature, (c)2D 

conductivity array , 2D current density potential solution.

Overall computation cycle



(a) (b)
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Resistive Glass Section MCP

3D Simulation of a uniform conductivity 

resistive glass cylinder.

(a) contour plot and electron trajectories

(b) an expanded end view of electron splats at the MCP when the beam has a cone and 

cross pattern with 4° half angle.



3D Simulation of a uniform conductivity resistive glass cylinder with a small 

insulating defect

(a) (b)

Field Distorted

By Insulating

Defect

Beam

Distorted

By Defect
(a) contour plot and electron trajectories, 

(b) an expanded end view of electron splats at the MCP when the beam has a 

cone and cross pattern with 4° half angle showing the distortion created by the 

insulating defect.



Using Harmonic Inversion to Determine 

Unstable Trajectories in a Trap.

HARMINV
Each harmonic function fitted  by HARMINV with four parameters and has the form:

𝐴 𝑒−𝑑∙𝑡 𝑒−𝑖∙(2𝜋∙𝑓∙𝑡−𝜑) ,

With amplitude (A), decay constant (d), frequency (f),  phase (ϕ), and the index (harm#).  Our Simion 

workbench program records eight more parameters for the trajectory at our analysis point, as shown in the 

partial spreadsheet below.

Vrf Vdc qv av ion_ke min max harm# frequency
decay 

constant Q amplitude phase error

9.72E+00 0.00E+00 3.00E-02 0.00E+00 1.86E-02 0.00E+00 3.89E-02 1 -4.00E+00 4.21E-03 2.98E+03 5.58E-03 -1.63E-01 1.70E-06

9.72E+00 0.00E+00 3.00E-02 0.00E+00 1.86E-02 0.00E+00 3.89E-02 2 1.95E+00 9.22E-02 6.63E+01 1.32E-03 -8.46E-01 1.88E-04

9.72E+00 0.00E+00 3.00E-02 0.00E+00 1.86E-02 0.00E+00 3.89E-02 3 2.06E+00 2.96E-02 2.19E+02 1.26E-03 -3.27E-01 1.67E-05

9.72E+00 0.00E+00 3.00E-02 0.00E+00 1.86E-02 0.00E+00 3.89E-02 4 3.96E+00 -1.69E-04 -7.37E+04 2.34E-03 3.12E+00 4.92E-07

9.72E+00 0.00E+00 3.00E-02 0.00E+00 1.86E-02 0.00E+00 3.89E-02 5 4.00E+00 -9.20E-07 -1.37E+07 4.64E-03 -2.42E-03 2.61E-06

9.72E+00 0.00E+00 3.00E-02 0.00E+00 1.86E-02 0.00E+00 3.89E-02 6 4.04E+00 -1.08E-04 -1.18E+05 2.29E-03 -3.13E+00 4.12E-06



If we use the HARMINV data for points throughout q-a space then we can use the decay

constant to show the onset of growth in trapped ions trajectory to map out a stability diagram. 

Furthermore, we can do the this as a function of initial kinetic energy of the ions to see stability 

near the trapping center as compared to larger orbits where the nonlinear field have more effects.



Solving for space charge in ion traps

1) Electrostatic traps, e.g. The Kingdon trap.

We can now use the generalized Poisson solver to 

Solve,

∇ ∙ 휀∇𝜑 = 𝜌
Q: But how do we get the space charge 𝜌?
A:Start with a guess and use ion trajectories to estimate

the space charge, resolve and fly again,… continue to

self consistency.

A “current mode” simulation whereby a test charge is emmited

from a source and we consider the path to be a path of current

through the space so that we can record that currents charge 

density.  If we carefully choose a realistic collection of test 

charges, we can have reasonable estimate of 𝜌 after several interations.

Even this method can take a great deal of computation for a trap.



Latest Generation GPUs
>1TFLOP FP64 (Double Precision) on your desk

…API: CUDA, OpenCL, HIP, etc

…Framework: Tensor Flow, PyTorch, etc

NVIDIA GA10X Ampere Architecture

Consumer Grade Workstation Grade

Enabling Deep Simulation at low cost



Additive Fabrication Technologies
Enable New Design Paradigm

FDM (Fused Deposition Modelling)
-Metal: BASF Ultrafuse 316L Metal 3D Printing 

SLA (Stereo Lithography)
SLS (Selective Laser Sintering)

MJF (Multijet Fusion)
DMLS (Direct Metal Laser Sintering)

3D Printed Lost Wax Casting
…

- Rapid Prototyping

- Generative Design

- Un-machinable Trapped 

Geometries

- etc…


