Concept for a Miniaturized Confocal Plane Mass Spectrometer

Gottfried P. Kibelka, Adi A. Scheidemann

Intelligent Ion, Inc.

Goal: Build a small, very fast GC/MS

Gas chromatograph

- Small and lightweight
- Steep temperature ramps
- Fast injector
- Low thermal capacity
- High analytical throughput
- Standard columns and parts

Flash-Gas-Chromatograph - MS

The 1" Focal Plane MS

Detectors

- 1. Micromachined Faraday Cup Array (MFCA)

 University of Washington A. Scheidemann
- 2. Electro-Optical Ion Detector (EOID)

 JPL- M. Sinha
- 3. Charge-Coupled Device (CCD)

 JPL M. Wadsworth & M. Sinha

MFCA Construction Details

suppressor grid

conformally deposited oxide and cup conductor

anisotropically etched silicon trenches

bakeout heater

MFCA in DRIE

- 1. Deep reactive ion etching to produce the Faraday cups.
- 2. Oxidation to produce an insulating film.
- 3. Deposition of polysilicon to produce the cup conductor.
- 4. Doping of the polysilicon with boron to increase the conductivity of the cup conductor.
- 5. Reactive ion etching of the polysilicon to pattern the cup conductors.
- 6. Metalization with aluminum to form contacts to the cup conductors.

Micromachined Faraday Cup Array

SEM views of MFCA showing sharp internal features

Wire Bonding to PCB

Faraday Detector / PC-Board Mounted

FCDA-MUX-Integrator Unit

Two stage multiplexing

Multiplexer and Integrator Unit

The multiplexing and integration board sits in the vacuum housing

Desktop Mattauch-Herzog Instrument

Sample Spectrum

Sample Spectrum (2)

Noise as Function of Integration Time

New Results CO2 in Air

New Results CO2 in Air

Signal as Function of Integration Time

 $\frac{dV(t_{clock})^{INT}}{dt_{clock}} = \frac{-I_{Ion} N}{C_{INT}}$

High gain: max. 10¹¹ V/A

Read-out times
Linear:
30 msec to 3 sec

Significance/Conclusions

The development of a micromachined Faraday cup array in conjunction with a linear dispersion magnet in a confocal plane mass spectrometer enables the use of true multichannel mass spectrometry. This design is ideally suited for industrial process monitoring applications. Interfacing the LDMS system to a GC interface will allow to build a fast, low-cost GC/MS.

The Team

www.Intelligention.com

System Specifications

- Confocal plane Mattauch-Herzog layout
- DC-voltages and permanent magnet
- Ion Energy: 0.5-2.5 kV DC
- Mass Range:2-250 D, Window: 100%
- Baseline resolution for small molecules
- Xenon isotopes are well resolved
- EOID or Faraday Cup Detector Array
- Faraday Cup Detector Array with 250μm each
- Integrating operational amplifier with upto 10**11 gain
- ◆ Duty Cycle: > 99 %
- Read-Out Speed (FCDA): max 1.68 kHz